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1 Introduction

Despite advances in logic synthesis, synthesized designs are
often suboptimal because synthesis algorithms cannot take
full advantage of don’t-cares in circuits. For example, some
NAND3 gates may be replaced by NAND2 gates. As a gen-
eralization, redundancy removal optimizing a circuit by re-
placing instance inputs with constants (when possible). The
advantage of this optimization is that timing information is
known, and replacing inputs with constants cannot degrade
a circuit assuming reasonable delay and area models.

The basic redundancy removal algorithm is implemented
as described in [1]. First, a circuit is converted into a sim-
ple representation for efficient reasoning, and a set of pos-
sible stuck-at-faults generated. For efficiency, a fault isnot
checked if it can be checked by other means, e.g. a stuck-at-
0 on any AND inputs is testable iff the output is stuck-at-0
testable. Second, we simulate the circuit using a set of ran-
dom vectors to eliminate easily tested faults. Finally, we
use an automatic test pattern generator based on Boolean
satisfiability to confirm whether the remaining faults are
untestable.

It is important to note that once a fault site is replaced with
a constant, previously untestable faults may become testable,
and previously testable faults may become untestable (re-
dundancy removal uses ODCs, and notCompatible ODCs).
For efficiency, each fault is checked only once for testabil-
ity. The set of fault sites is sorted, and the sites with highest
priority are checked first.

2 Implementation

2.1 Architecture

In order to encourage code reuse and improve modularity,
our module exports a clean API, in which each component
does a single job (and does it well). The first three compo-
nents are meant for reuse by other OAGear modules, while
the last component is meant for user code and only expects
OpenAccess objects. The dependencies are shown graphi-
cally in Figure 1.

oagRedun::Flattener This component converts an anno-
tated oaDesign into a oagAi::Graph, while preserving in-
stance boundaries with AIG (and-inverter graph) terminal

nodes. Terminal nodes allow us to cleanly reason about spe-
cific inputs of specific gates. The flattener is implemented
using oagFunc::QueryOcc to accommodate hierarchical de-
signs, and thus requires that every wire has exactly one
driver. State bits are converted into pairs of graph inputs
and outputs.

oagRedun::RTG This component allows one to check
if replacing a given AIG node with a given constant will
change the function of the design.

oagRedun::CircuitSAT This component allows one to
check if replacing a given AIG node with another (not nec-
essarily a constant) will change the function of the design.
The interface is defined intentionally so that oagSsw can use
this component to check if node merges are feasible under
don’t-cares.

oagRedun:: The motivation behind the OpenAccess ini-
tiative is to provide clean programmatic interfaces, rather
than requiring users to run an executable for each operation,
reading and writing designs to disk between each command.
In accordance with this goal, we provide C++ functions to
remove unused logic and redundancies. The actual removal
is customizable using callback functions (the callback can
simply not remove redundancies at all, e.g. for testability
analysis).

2.2 Details

For cleanliness, query routines check whether AIG nodes
are replaceable, and not whether say, the left input of a given
AIG node is replaceable. Thus, each top-level oaInstTerm
corresponds to a unique AIG terminal. However, RTG and
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Figure 1: Dependencies and layers of abstraction



ATPG (s)
Benchmark # Cells Area Flatten (s) RTG (s) oagAi oagRedun # Redun ∆Area(%)

ac97_ctrl 11,855 674,737 0.95 0.52 0.49 0.37 85 0.04
aes_core 20,795 692,567 1.51 2.46 0.14 0.11 2 0.00
des_perf 98,341 4,002,720 7.82 4.86 0.78 0.74 0 0.00
ethernet 46,771 3,345,290 5.36 10.85 230.3 92.36 87 0.01

mem_ctrl 11,440 517,090 1.26 0.76 384.13 138.52 5798 20.66
usb_funct 12,808 625,340 1.38 1.18 14.61 6.27 261 0.32
vga_lcd 124,031 6,310,560 14.59 14.12 50009 2960.3 102 0.01

wb_conmax 29,034 1,049,350 3.51 3.84 43.4 19.56 4006 2.47

Table 1: Redundancy removal results

SAT algorithms generally perform faster with small AIGs.
Therefore, when a fault is tested, we remove its correspond-
ing terminal with the assumption that this oaInst boundary
may be blurred. Afterwards, we rewrite (without don’t-
cares) all logic between AIG terminals. Our implementation
currently uses oagAi::Graph::rehash.

The random test generation component is implemented
using two simulators. First, we simulate the entire AIG us-
ing a cycle simulator with random inputs. Second, for each
test site, we assume a given stuck-at-value and proceed with
an event-driven simulator, checking if any changes are ob-
served at graph outputs. Currently, the event queue is an STL
set which stores DFS numbers of nodes to be simulated.

The ATPG component is performed on an AIG using an
algorithm similar to that presented in [2]. Rather than using
lookup tables to accommodate 9-value logic, we use 3-value
logic and assign each node a pair of values. In the worst case,
this results in a 2x slowdown. To avoid this, we assign both
values simultaneously when we visit nodesnot in the tran-
sitive fanout of the fault site under test. The benefit is that
3-value logic enables very fast inference routines and allows
us to integrate conflict-based learning using CNF clauses.

We provide two implementations of ATPG. One natively
uses OAGear data structures and is intended for applications
with severely limited memory resources. The other uses an
efficient data structure with the following features:

1. Data such as reference counts are not embedded in AIG
nodes, thereby sparing applications from unnecessary
cache pollution. These data are rarely used and should
be stored separately by the AIG manager.

2. Since nodes are usually visited in DFS order, nodes are
stored in DFS order for cache locality.

3. Fanouts are stored by embedding nodes in linked lists
similar to those used in ABC1. In ABC, each node has
references to its own first fanout, to the next fanout of
its left input, and to the next fanout of its right input.
We improve on this by marking each reference with
one bit to indicate left/right input of the next fanout and

1http://www.eecs.berkeley.edu/~alanmi/abc/

another bit to indicate a node is complemented. This
streamlines fanout traversal and inference routines.

The second implementation synchronizes its internal data
with OAGear and uses an identical ATPG algorithm, so that
the two implementations differonly in performance.

3 Experimental Results

To test the performance of our implementation, we ran our
code on large netlists from the IWLS’05 benchmarks. All
code was compiled with GCC 3.3 using “-O2 -NDEBUG”,
and run on a Pentium-4 2GHz processor. All results were
verified by an independently written equivalence checker.

The results are shown in Table 1; most columns are self-
explanatory. The columns “oagAi” and “oagRedun” show
runtimes for the two different ATPGs based on the native
OAGear AIG and custom AIG, respectively. The runtimes
show that the new data structure is about 2x faster due to
better cache behavior. The column “∆Area (%)” shows re-
ductions from removing unused logic after redundancy re-
moval, further reductions may be obtained with resynthesis.

4 Conclusion

We presented a set of reusable components used to build a
combinational redundancy remover. We propose that oagAi
be rewritten using a lightweight AIG and a translation layer,
making methods such as oagAi::Graph::repackMemory triv-
ial to implement.
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