Efficient Redundancy Removal In OpenAccess

Donald Chai
donald@eecs.berkeley.edu

1 Introduction nodes. Terminal nodes allow us to cleanly reason about spe-
cific inputs of specific gates. The flattener is implemented

Despite advances in logic synthesis, synthesized designs a using oagFunc::QueryOcc to accommodate hierarchical de-

often suboptimal because synthesis algorithms cannot takesigns, and thus requires that every wire has exactly one

full advantage of don’t-cares in circuits. For example, som driver. State bits are converted into pairs of graph inputs

NAND3 gates may be replaced by NAND2 gates. As a gen- and outputs.

eralization, redundancy removal optimizing a circuit by re

placing instance inputs with constants (when possibleg Th oagRedun::RTG This component allows one to check

advantage of this optimization is that timing informatieni replacing a given AIG node with a given constant will
known, and replacing inputs with constants cannot degradechange the function of the design.

a circuit assuming reasonable delay and area models.
The basic redundancy removal algorithm is implemented
as described in [1]. First, a circuit is converted into a sim-

ple representation for efficient reasoning, and a set of pos- ily a constant) will change the function of the design.

sible stuck-at-faults generated. For efficiency, a fauitas , . : . .

e The interface is defined intentionally so that oagSsw can use
checked if it can be checked by other means, e.g. a stuck-at-, . . .

. :) . this component to check if node merges are feasible under
0 on any AND inputs is testable iff the output is stuck-at-0 ,
i A don't-cares.

testable. Second, we simulate the circuit using a set of ran-
dom vectors to eliminate easily tested faults. Finally, we

use an automatic test pattern generator based on Boolea@@dRedun:: The motivation behind the OpenAccess ini-
satisfiability to confirm whether the remaining faults are Uative is to provide clean programmatic interfaces, rathe
untestable. than requiring users to run an executable for each operation
h reading and writing designs to disk between each command.
In accordance with this goal, we provide C++ functions to
remove unused logic and redundancies. The actual removal

is customizable using callback functions (the callback can
simply not remove redundancies at all, e.g. for testability

oagRedun::CircuitSAT This component allows one to
check if replacing a given AlG node with anotheo{ nec-

Itis important to note that once a fault site is replaced wit
a constant, previously untestable faults may become testab
and previously testable faults may become untestable (re-
dundancy removal uses ODCs, and Gompatible ODCs).
For efficiency, each fault is checked only once for testabil-

ity. The set of fault sites is sorted, and the sites with highe 2nalysis).
priority are checked first.
2.2 Details
2 | mplementation For cleanliness, query routines check whether AIG nodes

are replaceable, and not whether say, the left input of angive
AIG node is replaceable. Thus, each top-level oalnstTerm
corresponds to a unique AIG terminal. However, RTG and
In order to encourage code reuse and improve modularity,
our module exports a clean API, in which each component

2.1 Architecture

does a single job (and does it well). The first three compo- oagRedun::
nents are meant for reuse by other OAGear modules, while . °;%'§dcu,"“ AT
the last component is meant for user code and only expects | 22enRTG,CircuitSAT}

OpenAccess objects. The dependencies are shown graphi OAGear

cally in Figure 1.
OpenAccess |

oagRedun::Flattener This component converts an anno-
tated oaDesign into a oagAi::Graph, while preserving in- _ _ _
stance boundaries with AIG (and-inverter graph) terminal Figure 1: Dependencies and layers of abstraction

ATPG (s)
Benchmark| # Cells Area | Flatten (s)| RTG (s) | oagAi | oagRedun| # Redun| AArea(%)
ac97_ctrl 11,855| 674,737 0.95 0.52 0.49 0.37 85 0.04
aes_core 20,795| 692,567 1.51 2.46 0.14 0.11 2 0.00
des_perf 98,341 | 4,002,720 7.82 4.86 0.78 0.74 0 0.00
ethernet 46,771 3,345,290 5.36 10.85| 230.3 92.36 87 0.01
mem_ctrl 11,440| 517,090 1.26 0.76 | 384.13| 138.52 5798 20.66
usb_funct 12,808| 625,340 1.38 1.18| 14.61 6.27 261 0.32
vga_lcd 124,031 6,310,560 14.59 14.12| 50009| 2960.3 102 0.01
wb_conmax| 29,034| 1,049,350 3.51 3.84 43.4 19.56 4006 2.47

Table 1: Redundancy removal results

SAT algorithms generally perform faster with small AIGs. another bit to indicate a node is complemented. This
Therefore, when a fault is tested, we remove its correspond- streamlines fanout traversal and inference routines.

ing terminal with the assumption that this oalnst boundary))] o

may be blurred. Afterwards, we rewrite (without don't- The second implementation synchronizes its internal data
cares) all logic between AIG terminals. Our implementation With OAGear and uses an identical ATPG algorithm, so that
currently uses oagAi::Graph::rehash. the two implementations diffemly in performance.

The random test generation component is implemented
using two simulators. First, we simulate the entire AlIG us- ;
using _ _ . 3 Experimental Results
ing a cycle simulator with random inputs. Second, for each

test site, we assume a given stucll<-at_-value and proceed WithTo test the performance of our implementation, we ran our
an event-driven simulator, checking if any changes are ob- code on large netlists from the IWLS’'05 benchmarks. All

served at graph outputs. Currently, the eventqueue is an STLcode was compiled with GCC 3.3 using “-O2 -NDEBUG"
set which stores DFS numbers of nodes to be simulated. 4 (i on a Pentium-4 2GHz processor. All results were

The ATPG component is performed on an AIG using an verified by an independently written equivalence checker.

algorithm similar to that presented in [2]. Rather than gsin The results are shown in Table 1; most columns are self-
lookup tables to accommodate 9-value logic, we use 3'Va|ueexplanatory. The columns “oagAi” and “oagRedun” show

Iog|c and assign each node a pair of vglue;. Inthe W,OrSt CaS€ntimes for the two different ATPGs based on the native
this resullts in a 2x slowdown. To §v9|d this, we assign both HaGear AIG and custom AIG, respectively. The runtimes
vg_lues simultaneously when we Visit node in the tran- show that the new data structure is about 2x faster due to
sitive fanout of the fault site under test. The benefitis that | ... cache behavior. The columAArea (%) shows re-
3-value logic enables very fast inference routines anawallo ductions from removing unused logic after redundancy re-

us to mtegr_ate Confllct-based Ie_arnlng using CNF clau_ses. moval, further reductions may be obtained with resynthesis
We provide two implementations of ATPG. One natively

uses OAGear data structures and is intended for application
with severely limited memory resources. The other uses an4 Conclusion
efficient data structure with the following features:
We presented a set of reusable components used to build a
1. Data such as reference counts are not embedded in Achombinationa| redundancy remover. We propose that OagAi
nodes, thereby sparing applications from unnecessarype rewritten using a lightweight AIG and a translation layer
cache pollution. These data are rarely used and shouldmaking methods such as oagAi::Graph::repackMemory triv-

be stored separately by the AIG manager. ial to implement.

2. Since nodes are usually visited in DFS order, nodes are
stored in DFS order for cache locality. References

3. Fanouts are stored by embedding nodes in linked lists[1] M. Berkelaar, K. van Eijk. Efficient and effective reduaty
similar to those used in ABC In ABC, each node has removal for million-gate circuits.International Workshop on
references to its own first fanout, to the next fanout of Logic Synthesis, 2001.
its left input, and to the next fanout of its right input. 2] A, Kuehimann, V. Paruthi, F. Krohm, M. K. Ganai. Robust
We improve on this by marking each reference with Boolean reasoning for equivalence checking and functional
one bit to indicate left/right input of the next fanout and property verification.|EEE Transactions on Computer-Aided

Design, 21(12):1377-1394, 2002.
Ihttp://www.eecs.berkeley.edu/~alanmi/abc/

