SAT Sweeping with Local Observability Don’t-Cares

Qi Zhu

Nathan Kitchen

University of California at Berkeley, CA, USA

1 Introduction

SAT sweeping is a method for simplifying an AND-INVERTER
graph by systematically merging graph vertices from the inputs to-
wards the outputs using a combination of structural hashing, sim-
ulation, and SAT queries [1]. Due to its robustness and efficiency,
SAT sweeping provides a solid algorithm for Boolean reasoning
in functional verification and logic synthesis. The original SAT-
sweeping algorithm merges two vertices only if they are function-
ally equivalent. However, functional differences between vertices
are not always observable at the outputs of a circuit. An extended
algorithm, which we call ODC SAT sweeping, achieves greater
graph simplification with moderately increased computational ef-
fort by exploiting observability along paths of bounded length [2].

1.1 Local Observability Don’t-Cares

For a given AIG, we define the observability of a vertex v € V,
denoted by a predicate obs(v), as follows:

if veO
otherwise
)]

In other words, the value at the output of a vertex is not observ-
able iff for each of its fanouts either that fanout vertex is itself not
observable or the other input of it evaluates to 0 — thus blocking
the logical path.

The concept of k-bounded observability or local observability
is based on limiting the length of the paths being considered for
observability, e.g., to reduce the effort for its computation. The
k-bounded observability, obs(v, k) is defined as:

1
”bs(”):{ Veroq) (0bs() A flother(+/,v)))

1 ifveOVvVk=0
VV’EFO(V) (Obs(v/ka 1) A
f(other(v',v)))

obs(v,k) =
otherwise
@

For example, for kK = 0 a vertex is always observable, whereas
obs(v,1) considers only the possible blockings at the immediate
fanouts of v.

Clearly, for every input assignment that results in obs(v) = 0
we can change the functionality of v without affecting the output
functions of the AIG. The idea of using local observability in SAT
sweeping is to exploit the fact that vertex u can be merged onto v if
the functions of « and v are equal for all k-bounded observable input
assignments, i.e., u and v have to be equal only if obs(u,k) = 1.
More formally:

Theorem 1 For a given k, vertex u can be merged onto vertex v if,

(f(u) & f(v))V —obs(uk) =1

Sketch of Proof: 1t is easy to show that the original circuit is equiv-
alent to the circuit after merging u onto v by arguing that for every
input assignment either f(u) = f(v) or obs(u,k) = 0, that is, either
their functions are identical or no path from u to any vertex within

k levels is sensitizable. Therefore, no differences can propagate to
any circuit output.

2 Algorithm

2.1 Overall Flow

In SAT sweeping, nodes are sorted into equivalence classes ac-
cording to their simulation vectors, and the classes are refined as
functional equivalences between nodes are verified. This technique
is not applicable to ODC SAT sweeping because the mergeability
condition is not an equivalence relation. Instead, it is necessary to
find independently for each node the nodes onto which it may be
merged. A dictionary of nodes, indexed by subsequences of sim-
ulation vectors, is used to find small sets of candidate replacement
nodes quickly. In order to mask unobserved simulation bits, ob-
servability vectors are computed from the simulation vectors. The
overall flow of ODC SAT sweeping is shown in Algorithm 1.

Algorithm 1 SAT SWEEPING WITH LocAL ODCs

1: {Given: AIG C = (V,E); bound k}

2: initialize simulation vectors F(v) with random input values
3: compute observability vectors OBS(v,k)

4: insert each node v in dictionary D

5: forallu € V do

6: update OBS(u,k)

7. for all v € SEARCH(D,u, OBS(u,k)) do

8 if (F(u) & F(v))V OBS(u,k) =1 {bitwise} then
9: res :== SAT-CHECK ((f (u) @ f(v)) Nobs(u,k))
10: if res = SAT then

11: add SAT counterexample to vectors F (v)
12: else if res = UNSAT then
13: MERGE (u,v)
14: update vectors F(v), D
15: g0 to next u

If a vertex u is merged onto a vertex v in its transitive fanout, a
cycle will be created in the AIG. Both the original SAT-sweeping
algorithm and our extension avoid this case conservatively by com-
paring the levels of the vertices: u can be merged onto v only if
LEVEL(u) > LEVEL(v). This constraint can be exploited for effi-
ciency by iterating over the vertices in level order. Only the vertices
at the current level and below are searched for merging candidates.
We included this refinement in our implementation, but it is omitted
from Algorithm 1 for simplicity.

2.2 Use of Simulation Vectors

Let F(v) denote the simulation vector computed for v by simu-
lating the circuit with random input assignments. Then the observ-

ability vector OBS(v) is computed as follows:

[111...11] if veO VvV k=0
\/V’EFO(V) (OBS(Vlka 1) A

F (other(v',v)))

OBS(v,k) =
otherwise
3)

To implement the search dictionary efficiently, we use a binary
trie. Each leaf node of the trie corresponds to a set of AIG vertices.
Each internal node is associated with a branching bit index. For a
trie 7 with branching bit index i, AIG vertices with F;(v) = 0 are
stored in the sub-trie Tj) on the O-branch and vertices with F;(v) = 1
are stored in the subtrie 77 on the 1-branch. Note that vertices with
different simulation vectors may be stored in the same leaf since
the bits that differ may not be indexed by the branching bits.

To find candidate vertices for merging, we use a recursive search
routine on the trie. At each level, a branch is selected according to
the bit F;(v). However, the branching bit may not be observed,
because it is masked by the observability vectors OBS(v,k). In this
case, it cannot be used to discriminate between branches to follow,
so both branches are followed.

The number of leaves visited in a search is exponential in the
number of don’t-care bits among the branching bits. In order to
minimize the number of leaves visited, we select the branching bit
indices with a straightforward heuristic: For each index i, we com-
pute the number of observed bits in the simulation vectors with
index i, i.e., Y, OBS;(v,k), and use the bits with the largest sums.
This heuristic does not take into account any correlation between
bits. In preliminary experiments, we found that the extra computa-
tion required to consider correlation outweighed the benefit.

3 Implementation

We implemented ODC SAT sweeping for and/inverter graphs
(AIGs) represented using the Ai package in OAGear.

3.1 Application Programming Interface
The API for our Ssw package consists of two main classes:

e OBSAIGRAPH is an observable AIG. Derived from the
oagAi::Graph class, it adds the capability to mark nodes as
observable.

e ODCSATSWEEPINGENGINE performs ODC SAT sweeping
on an ObsAiGraph. Its public interface is shown in Figure 2.

The public interfaces of the OBSAIGRAPH and ODC-
SATSWEEPINGENGINE are shown in Figures 1 and 2, respectively.
For simplicity, we omit the oagAi namespace qualifier here.

class OBSAIGRAPH — Public interface
OBSAIGRAPH O)

bool ISOBSERVABLE (Ref x)
void SETOBSERVABLE (Ref x)

Figure 1: Public interface of the ObsAiGraph class

An OBSAIGRAPH can be constructed easily from Verilog or
OpenAccess designs by means of the QueryOcc and ReasoningEn-
gine classes in the OAGear Func package. Once a graph is con-
structed, it is passed to an ODCSATSWEEPINGENGINE for sweep-
ing. In some applications, such as bounded model checking, only
a subset of the nodes in the graph should be swept. For this reason,
the set of nodes to operate on can be explicitly specified. Like-
wise, the set of possible replacement nodes can be specified by the
SETREPPOOL method.

class ODCSATSWEEPINGENGINE — Public interface
ODCSATSWEEPINGENGINE ~ (ObsAiGraph graph)
ODCSATSWEEPINGENGINE (ObsAiGraph graph,

list<Ref> nodes)

void SETREPPOOL (list<Ref> reps)
void RUN (uint nObsLevels)
bool HASREP (Ref X)
Ref GETREP (Ref X)
Params params

Figure 2: Public interface of the OdcSatSweepingEngine class

The RUN method performs ODC SAT sweeping for a given
number of levels of local observability. Separating this method
from the constructors enables the user to sweep the same nodes
multiple times, e.g., with increasing values of nObsLevels in an it-
erative deepening scheme.

After ODC SAT sweeping is performed, the nodes that are re-
placed can be identified with the HASREP method. The GETREP
method provides the replacement for a given node. These meth-
ods provide sufficient information for aggressive restructuring of
the graph when desired. Within ODCSATS WEEPINGENGINE itself,
merges are conservative, even when structural hashing is enabled:
The fanout edges of merged nodes are redirected, and merges are
propagated forward through the graph, but merged nodes are not
detached from their inputs nor deallocated. As a result, external
references into the graph are preserved. A user can simplify the
graph more aggressively by detaching replaced nodes and running
garbage collection.

The performance of ODC SAT sweeping can be tuned by ad-
justing several parameters in the ODCSATSWEEPINGENGINE, in-
cluding the initial number of simulation bits, the maximum number
of backtracks per SAT query, and the maximum number of nodes
stored in any leaf of the trie.

3.2 Subcomponents

Our Ssw package uses MINISAT [3] for satisfiability checks.
Although we created a separate package in OAGear for it, we use
its interface directly rather than through a wrapper interface. Re-
placing it with another SAT solver would require modifications in
multiple places in our code.

4 Results

We have tested our implementation of ODC SAT sweeping
with several modules from the OpenCores repository (available at
http://www.opencores.org), ranging in size from 200 to
50K AIG nodes. In our experiments, we found that ODC SAT
sweeping can merge significantly more nodes than the original
SAT-sweeping algorithm, and the runtime of the algorithm scaled
well with circuit size. For more information, see [2].

We would like to point that the number of equivalent vertices
typically has a strong effect on the power of equivalence checking
techniques beyond SAT sweeping [1]. Equivalent vertices provide
cutpoints that reduce the size of the subproblems, and thus the com-
plexity. In addition, in bounded model checking the equivalences
have a great effect on simplification in later time frames.

References

[1] A. Kuehlmann, “Dynamic transition relation simplification for bounded property
checking,” in ICCAD 2004, pp. 50-57.

[2] Q.Zhu, N. Kitchen, A. Kuehlmann, and A. Sangiovanni-Vincentelli, “SAT sweep-
ing with local observability don’t-cares,” in DAC 2006.

[3] N.Eén and N. Sorensson, “An extensible sat-solver [ver 1.2].”

